
Quantum tunneling of magnetization in Mn₁₂-acetate

We measure the magnetization curve of a Mn_{12} -acetate. The molecule consists of 12 Mn atoms, 8 Mn atoms having spin up and 4 Mn atoms having spin down. Each Mn atom has a spin S = 5/2 and orbital moment L = 0. For simplicity we assume a uni-axial crystal field and then an energy level scheme described by $E = -D J_z^2$ at H = 0 T. Calculate the expected difference in magnetic field between

 $D=0.052~meV;\,\mu_B=0.06~meV/T$

two subsequent drops of the magnetization.

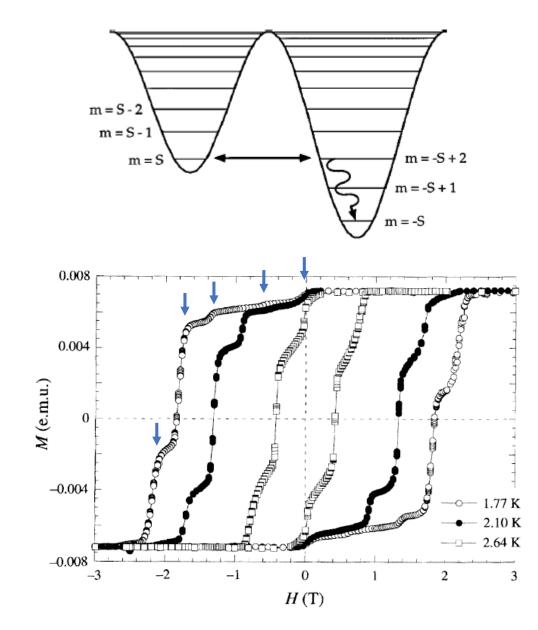
Single molecule magnet:
Mn₁₂-acetate

Solution: quantum tunneling of magnetization in Mn₁₂-acetate

The magnetization drop is due to QTM induced by spin-phonon scattering between states with opposite J_z values.

In field the energy scheme is described by $E = -D J_z^2 - g\mu_B J_z H$. At low T, after saturation at high field only the ground state is occupied. Then, reversing the field, a drop in M(H) is observed when the ground state $J_z = S$ is degenerate with a state with opposite $J_z = -S + n$ i.e.

-DS² -
$$g\mu_B$$
 S H = -D(-S+n)² - $g\mu_B$ (-S+n) H


-DS² -
$$g\mu_B$$
 S H = -DS²-Dn²+2nDS - $g\mu_B$ (-S+n) H

$$Dn(2S + n) = g\mu_B (2S+n) H$$

$$H = -Dn/g\mu_B$$

$$\Delta H = \text{-}D(\text{n-1})/g\mu_B \text{ -}(\text{-}D\text{n}/g\mu_B) = D/g\mu_B$$

Because L = 0, g = 2 and then $\Delta H = 0.43$ T

